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Multidisciplinary teams (MDTs), the cornerstone of modern cancer care, are facing significant operational
inefficiencies. These challenges include the laborious, manual synthesis of unstructured, multimodal patient data
for case preparation, which is time-consuming and prone to information overload. Furthermore, heterogeneous
operational processes across MDTs themselves compound these issues. Additionally, clinical decisions are often
archived in static documents, preventing the systematic collection of decision rationales essential for continuous
learning and research. We propose that artificial intelligence (Al), particularly natural language processing (NLP)
and large language models (LLMs), can act as integrated partners to solve these problems. The capacity of Al to
seamlessly integrate diverse datasets—including imaging, histopathology, genomics, and clinical data—may be
instrumental in enhancing diagnostic accuracy, refining personalized treatment plans within a complex cancer
management journey. This integration can be achieved through a tiered approach, utilizing models from small NLP
for targeted information extraction to foundational generative NLP for complex evidence synthesis, while
addressing key challenges in validation, ethical governance, and regulatory oversight. International initiatives are
actively developing validated frameworks to facilitate the widespread and standardized adoption of these Al
solutions, while taking into account heterogeneous operational processes. By improving data management,
streamlining decision making, and establishing crucial feedback loops, Al integration promises to enhance patient

outcomes and optimize resource utilization within cancer care.
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INTRODUCTION

Multidisciplinary teams (MDTs) are a cornerstone of mod-
ern cancer care and have become standard practice for 25
years,” uniting diverse specialists to discuss complex pa-
tient cases and formulate optimal treatment plans. While
crucial for navigating oncology’s complexities, MDTs face
significant inefficiencies due to burdensome case prepara-
tion, complex decision making, and a lack of systematic
documentation. The process is resource-intensive and time-
consuming, with clinicians potentially spending hours pre-
paring for a single patient case by manually synthesizing
vast amounts of disparate, unstructured data from various
sources like clinical notes, pathology slides, genomic data,
and radiology reports (Figure 1, panel EHR). Such manual
review leads to information overload and cognitive burden,
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and without dedicated digital frameworks, the subjective
coordination of this complex data strains MDT resources.
The time available for in-depth discussion of patient care is
thereby negatively impacted. The problem is exacerbated
by the fact that valuable input data often comes from
unstructured, sometimes paper-based, sources, and de-
cisions are archived in static formats like PDFs. This pre-
vents the systematic collection of the decision rationale,
which is crucial for continuous learning and improvement.
The lack of structured data, along with heterogeneous
operational processes,” also diminishes the utility of real-
world data for research, and hinders the delivery of truly
personalized care.

Artificial intelligence (Al) technologies are transforming
cancer care by significantly enhancing data management
efficiency,® augmenting clinical decision making,” and
facilitating increasingly personalized patient treatment
approaches.” Among Al technologies, rapid advancements
in natural language processing (NLP) and large language
models (LLMs), which are, respectively, computational
techniques that enable computers to understand and
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Figure 1. Overview of data flow and NLP integration in oncology multidisciplinary team (MDT) meetings. This figure illustrates the journey of patient data from
electronic health records (EHRs) through an oncology MDT process, highlighting critical junctures for NLP integration.

EHR panel (left): depicts the diverse sources of patient data within an EHR system. Patient data typically flow from various EHR sources, into MDT stages via direct manual
access by MDT members within the EHR system. Increasingly, the data flow in MDTs often encompasses multimodal data (e.g. clinical notes, imaging reports, laboratory
results).Oncology MDT panel (middle): details the sequential workflow of an oncology MDT, emphasizing points where NLP can enhance efficiency and decision making.
Critical points of NLP integration are highlighted, aiming to enhance information flow and decision support. Solid lines depict the established, internal workflow steps and
direct data flow exclusively within the MDT process. Dotted lines represent the points where EHR data are accessed and typically processed manually. NLP model selection
panel (right): categorizes NLP models based on their complexity and task capabilities, offering a tiered approach for tool selection in MDT applications. The horizontal axis,
‘NLP task complexity’, signifies the increasing complexity of tasks from left to right. The vertical axis, ‘NLP model complexity’, indicates the increasing complexity of the
models from bottom to top. Three tiers are suggested (small NLP, optimized generative NLP, and foundational generative NLP models) to guide the selection of appropriate
tools for applications in the MDT. The dotted line in lower panel illustrates the increasing scale of text processing capacity with higher NLP model complexity. A fuller value
continuum of the three tiersis displayed in Table 1. LLMs leverage various NLP techniques as their foundation, and represent the state-of-the-art in foundational generative
NLP. While foundational generative NLP might not require the sheer scale or emergent capabilities of modern LLMs, its implementation within MDTs can lead to more
manageable practical challenges, including data privacy concerns, regulatory hurdles specific to Al in clinical practice, user adoption, and the ongoing need for maintenance
and updates of Al models.

Al, artificial intelligence; LLM, large language models; NLP, natural language processing.

process human text, and sophisticated Al models trained by efficiently structuring unstructured clinical text and
on vast amounts of text data to generate human-like text synthesizing vital information.” This allows them to accu-
responses, are fundamentally shifting their role in MDTs rately identify and categorize crucial details, such as can-
from mere assistive tools (Figure 1, panel oncology MDT) cer staging, exposure to prior therapies, and laboratory
to integrated partners in decision making.® In this specific and molecular tests results, directly from clinical notes or
context, NLPs and LLMs will potentially refine cancer care PDF reports. Nevertheless, this evolution necessitates a
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Table 1. Tiered language processing value continuum: from extraction to synthesis

Small NLP Optimized generative NLP Foundational generative NLP

Standard metrics

High efficiency for specific tasks.
Low scalability and cost

High accuracy on specific tasks.
Brittle with new data

Ideal for specific, repetitive tasks.
Needs domain experts

Performance metrics
Scalability and efficiency

Standard and qualitative metrics
Moderate efficiency and scalability. Low efficiency, high scalability.
Moderate cost Very high cost

Good accuracy within fine-tuned domain. High variability. Risk of fluent but
More robust than small NLP incorrect information

Good for summarization, data structuring, Broad use for complex tasks
decision support (problem-solving). Requires
validation

Very high flexibility (multitask).
Extremely high cost

High risk. Needs robust validation

Primarily qualitative metrics

Accuracy and reliability
Usability in health care
Flexibility and computational Low flexibility (one task/model).

cost Very low cost
Risk of hallucination Very low. Extractive and non-generative

Moderate flexibility (adaptable).
Moderate cost

Moderate risk. Can generate plausible
but incorrect information

Better with fine-tuning on relevant data

Ease of capture of temporality Requires manual engineering.

Challenging

Excellent. Requires careful prompting

Small NLP: represents foundational NLP techniques designed for specific, less complex tasks. Entity recognition, relationship extraction, negation detection, attribute extraction,
factual lookup, clinical concept mapping: examples of targeted information extraction tasks, typically processing up to ~500 words. Optimized generative NLP: refers to more
advanced generative models capable of handling moderately complex tasks. Medical text summarization, information structuring, clinical guideline compliance, clinical decision
support: tasks involving processing up to 5000 words. Foundational generative NLP: encompasses state-of-the-art models, including LLMs, suited for highly complex tasks.
Evidence synthesis, repurposing: represent broad information discovery tasks, capable of processing over 100 000 words. Evaluation Metrics:

Standard metrics: F1-score, precision, recall. Qualitative metrics: subjective, human-based assessments of Al output. They often evaluate qualities like coherence, relevance, and
factual accuracy, which are difficult to capture with a simple numerical score.

Al, artificial intelligence; LLMs, large language models; NLP, natural language processing.

proactive approach to evaluation, ethical governance,
and regulatory oversight to ensure patient safety and
maintain trust.®

THE OPERATIONAL PROCESS FOR Al IMPLEMENTATION
IN MDTS

Utilizing models of different complexity tiers, namely small
NLP, optimized generative NLP, and powerful foundational
generative NLP, an NLP-assisted workflow can be designed
to enhance the MDT process (Table 1). The choice of the
NLP model and its corresponding validation approach are
critical and vary based on the task’s complexity and the
nature of the desired output.”*?

The NLP model selection can be envisioned as a dynamic
library of NLP methods, selectable to construct tailored
workflows (Figure 1, panel NLP model selection). Following
the principles laid out here and given the variability of MDT
operational processes, these workflows can in principle be
extended to any MDT beyond oncology. Raw clinical data
from electronic health records (EHRs), including patient
status reports, laboratory test results, and detailed pa-
thology reports are routed to specialized NLP modules
based on the specific information extraction and synthesis
tasks required.

The first option for workflow construction, targeted in-
formation extraction, utilizes models belonging to the small
NLP tier. As demonstrated in Figure 1 (panel NLP model
selection), these models excel at various information
extraction tasks, including named entity recognition
(NER),***® question answering (Q/A),*”™° relation extrac-
tion,”>?? and classification.>®>** For instance, small NLP
models have demonstrated strong performance across
diverse tasks and data scales. A convolutional neural
network-based small NLP model achieved high accuracy
across five information extraction tasks from a large
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dataset of over 23 000 pathology reports.>> Furthermore,
sophisticated training techniques have been shown to
improve the performance of small NLP models when
assigning ICD-0-3 codes to pathology reports.”® The po-
tential of such models for underrepresented languages was
recently by training a Spark NLP model on just 100
manually annotated Romanian colonoscopy reports and
still achieving excellent performance for NER.>” These
models are typically trained on standard servers (i.e. cost-
effective systems equipped with powerful consumer-
grade components, having a shorter life span) with
graphical processing units (GPUs) and, once optimized, can
be deployed for real-time inference on more accessible
central processing unit (CPU)-based systems or even edge
devices. Their validation is straightforward, relying on
traditional performance metrics such as accuracy and F1-
score, which are calculated automatically on a held-out,
human-annotated dataset. The output is a single, verifi-
able data point.”?® Such projects can now be implemented
without a huge investment into infrastructure or compu-
tational power, as the necessary hardware may already be
available within the hospital and the expertise can often be
found within its IT staff with recent university training.
Another option for workflow construction, structured
output generation, employs optimized generative NLP
models to carry out more complex contextual under-
standing and data structuring. These models analyze com-
bined inputs, such as structured laboratory data and
unstructured patient reports (from various linguistic con-
texts), to identify and format clinically relevant information.
A prime example is the identification and structuring of
potential adverse events, like neutropenia or thrombocy-
topenia, into a standardized format, such as JSON, ready
for integration into the MDT’s review tools. This process
heavily relies on sophisticated prompt engineering, where
carefully crafted instructions guide the model to extract
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and format information with fewer data annotations
required, as annotations are primarily needed for validation
rather than training. These optimized generative NLP
models are designed to run locally on capable servers (i.e.
high-speed, reliable, and scalable systems equipped with
high-end consumer or enterprise-grade components,
designed for continuous use), potentially with GPUs (for
parallel processing resulting in faster response times).
Crucially, while optimized generative NLP can also handle
tasks traditionally carried out by small NLP models, such as
NER, this flexibility comes at a significantly higher compu-
tational cost, representing a key trade-off for broader
applicability. However, for tasks requiring a broader
contextual understanding or more flexible output formats,
they offer significant advantages without the need for
specific training data for each new task.?>* Studies have
demonstrated practical validation approaches for using
optimized generative NLP in NER tasks with sophisticated
prompt engineering, often combining automated metrics
(achievable with annotated validation data)*” with auto-
mated checks for the required output structure (e.g. vali-
dating against a JSON schema)*! and qualitative human
review for nuances.**** Given the complexity and potential
clinical impact, the validation of structured outputs from
these models involves rigorous manual review by clinicians
to verify the relevance, accuracy, and adherence to clinical
guidelines (e.g. toxicity grading).>>°

For complex tasks, the system can be integrated with
foundational generative NLP models. These powerful
models are often cloud based due to their high computa-
tional demands. A promising evolution is agentic Al, where
the NLP/LLM acts as a central ‘brain’. This brain autono-
mously selects and coordinates specialized tools to carry
out multi-step tasks. These Al agents are designed to
function with a high degree of autonomy, capable of
analyzing a clinical case, identifying the necessary steps for
a full evaluation, and then sequentially using the appro-
priate tools—such as segmenting a medical image or
extracting structured data from a report—to gather the
required information.?’?” As demonstrated by Ferber
et al,*® this integration of an LLM with a toolkit of
specialized functions drastically improves the ability to
generate precise solutions for complex, realistic medical
cases, moving beyond simple data structuring to a more
comprehensive and autonomous analysis. As with many Al
applications, it might be too early to deploy such autono-
mous systems in clinical practice, given ongoing concerns
about their reliability, transparency, and accountability.
Ensuring the safety and validity of these ‘black box’
systems, alongside establishing clear regulatory frame-
works, remains a critical challenge before they can be
responsibly integrated into patient care pathways.*”

While similar in principle to prompting optimized
generative NLP, leveraging foundational generative NLP
models often involves more intricate and extensive prompt
engineering to harness their vast general knowledge,
advanced reasoning capabilities, and huge context win-
dows (often exceeding 100 000 words). Furthermore, these
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models, accessed via application programming interface,
offer tools for enhanced validation. For instance, one can
prompt the model to verify its generated interpretations of
molecular test results against up-to-date online knowledge
bases or to cross-reference potential off-label treatment
options with current research literature.*®** They excel at
synthesizing information across diverse and voluminous
datasets, such as comprehensive case summaries or
insights derived from an entire patient history. For such
high-level, generative outputs, validation methods include
qualitative human evaluation by multiple independent
clinical raters, assessing aspects like coherence, relevance,
factual accuracy, and completeness, as automated metrics
alone are insufficient to capture clinical utility (Table 1). The
necessity for different validation approaches underscores
that the reliability of NLP in clinical settings is directly tied

to the complexity and criticality of the task it carries
0Ut.30'43'44

SETTING THE PACE—FROM HETEROGENEITY TO Al-
DRIVEN OPERATIONAL EXCELLENCE IN MDTS: ENHANCING
PATIENT OUTCOMES

The integration of Al within MDTs presents a trans-
formative opportunity to significantly enhance cancer care.
By streamlining operational processes, boosting decision-
making efficiency, and establishing crucial feedback loops
for continuous learning, NLP can profoundly support MDTs
both operationally and scientifically, ensuring that human
clinical expertise remains central. This approach promises
not only improved patient outcomes, but also a more
efficient utilization of resources across health care systems.

However, the inherent heterogeneity in MDT organiza-
tion across different countries and hospitals poses a sig-
nificant challenge to the widespread and standardized
implementation of Al solutions. This organizational vari-
ability, coupled with the prevalent reliance on unstructured
data sources and static documentation, critically impedes
the systematic collection of decision rationale and hinders
the essential feedback loops for continuous learning and
improvement.

To address these challenges and foster the necessary
trust for regulatory acceptance of Al in clinical decision
making, several international initiatives are emerging. In
Europe, the Digital Institute for Cancer Outcomes Research
(DIGICORE) and its DigiONE network (DIGItal Infrastructure
for ONcology) are at the forefront of leveraging Al tech-
nologies to improve precision oncology in Europe.*> While
a primary focus of DIGICORE, and indeed a broader
movement within health care, is on structuring real-world
data for secondary use (e.g. for research, outcomes anal-
ysis, and benchmarking across health care systems, often
utilizing frameworks like Minimal Essential Description of
Cancer and Observational Medical Outcomes Partnership),
the power of their approach extends further. By addressing
the complexities of unstructured clinical notes through NLP
technologies, the very same DIGICORE NLP technologies
employed to extract and harmonize critical insights for
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research protocols and health quality indicators can be
readily adapted to structure data for primary use, directly
enhancing vital clinical processes such as MDTs.

DIGICORE’s roadmap includes defining and executing,
together with health care professionals, a survey to map
current MDT practices and establish a crucial operational
baseline. The concept of a ‘placebo’ survey is to establish
an objective, detailed baseline of the current MDT opera-
tional process before the introduction of any new Al-driven
technology. The term ‘placebo’ is used metaphorically; the
survey is a diagnostic tool, rather than an active interven-
tion, designed to map existing workflows, identify
communication barriers, and pinpoint operational bottle-
necks without the bias that might arise from simulta-
neously introducing a new system. This foundational
understanding of current practices is crucial, as it provides
a clear benchmark against which the true impact and
effectiveness of subsequently implemented Al solutions
can be accurately measured. In parallel, the United States-
based xCures initiative”® operates the xDECIDE platform, an
Al-augmented clinical decision support system. This system
uses a ‘human—Al team’ approach, combining NLP and
machine learning with expert review from oncologists and
molecular pharmacologists in a virtual tumor board setting.
By structuring complex patient data and integrating real-
world evidence, these transatlantic efforts are building
the foundational, validated frameworks vital for unlocking
Al's full potential in MDTs. These international initiatives
are essential for paving the way for scalable advancements
in global cancer care and building the confidence required
for widespread adoption.
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