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Multidisciplinary teams (MDTs), the cornerstone of modern cancer care, are facing significant operational 
inefficiencies. These challenges include the laborious, manual synthesis of unstructured, multimodal patient data 
for case preparation, which is time-consuming and prone to information overload. Furthermore, heterogeneous 
operational processes across MDTs themselves compound these issues. Additionally, clinical decisions are often 
archived in static documents, preventing the systematic collection of decision rationales essential for continuous 
learning and research. We propose that artificial intelligence (AI), particularly natural language processing (NLP) 
and large language models (LLMs), can act as integrated partners to solve these problems. The capacity of AI to 
seamlessly integrate diverse datasets―including imaging, histopathology, genomics, and clinical data―may be 
instrumental in enhancing diagnostic accuracy, refining personalized treatment plans within a complex cancer 
management journey. This integration can be achieved through a tiered approach, utilizing models from small NLP 
for targeted information extraction to foundational generative NLP for complex evidence synthesis, while 
addressing key challenges in validation, ethical governance, and regulatory oversight. International initiatives are 
actively developing validated frameworks to facilitate the widespread and standardized adoption of these AI 
solutions, while taking into account heterogeneous operational processes. By improving data management, 
streamlining decision making, and establishing crucial feedback loops, AI integration promises to enhance patient 
outcomes and optimize resource utilization within cancer care.
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INTRODUCTION

Multidisciplinary teams (MDTs) are a cornerstone of mod-
ern cancer care and have become standard practice for 25 
years, 1 uniting diverse specialists to discuss complex pa-
tient cases and formulate optimal treatment plans. While 
crucial for navigating oncology’s complexities, MDTs face 
significant inefficiencies due to burdensome case prepara-
tion, complex decision making, and a lack of systematic 
documentation. The process is resource-intensive and time-
consuming, with clinicians potentially spending hours pre-
paring for a single patient case by manually synthesizing 
vast amounts of disparate, unstructured data from various 
sources like clinical notes, pathology slides, genomic data, 
and radiology reports (Figure 1, panel EHR). Such manual 
review leads to information overload and cognitive burden,

and without dedicated digital frameworks, the subjective 
coordination of this complex data strains MDT resources. 
The time available for in-depth discussion of patient care is 
thereby negatively impacted. The problem is exacerbated 
by the fact that valuable input data often comes from 
unstructured, sometimes paper-based, sources, and de-
cisions are archived in static formats like PDFs. This pre-
vents the systematic collection of the decision rationale, 
which is crucial for continuous learning and improvement. 
The lack of structured data, along with heterogeneous 
operational processes, 2 also diminishes the utility of real-
world data for research, and hinders the delivery of truly 
personalized care. 1

Artificial intelligence (AI) technologies are transforming 
cancer care by significantly enhancing data management 
efficiency, 3 augmenting clinical decision making, 4 and 
facilitating increasingly personalized patient treatment 
approaches. 5 Among AI technologies, rapid advancements 
in natural language processing (NLP) and large language 
models (LLMs), which are, respectively, computational 
techniques that enable computers to understand and
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process human text, and sophisticated AI models trained 
on vast amounts of text data to generate human-like text 
responses, are fundamentally shifting their role in MDTs 
from mere assistive tools (Figure 1, panel oncology MDT) 
to integrated partners in decision making. 6 In this specific 
context, NLPs and LLMs will potentially refine cancer care

by efficiently structuring unstructured clinical text and 
synthesizing vital information. 7 This allows them to accu-
rately identify and categorize crucial details, such as can-
cer staging, exposure to prior therapies, and laboratory 
and molecular tests results, directly from clinical notes or 
PDF reports. Nevertheless, this evolution necessitates a

Figure 1. Overview of data flow and NLP integration in oncology multidisciplinary team (MDT) meetings. This figure illustrates the journey of patient data from 
electronic health records (EHRs) through an oncology MDT process, highlighting critical junctures for NLP integration.
EHR panel (left): depicts the diverse sources of patient data within an EHR system. Patient data typically flow from various EHR sources, into MDT stages via direct manual 
access by MDT members within the EHR system. Increasingly, the data flow in MDTs often encompasses multimodal data (e.g. clinical notes, imaging reports, laboratory 
results).Oncology MDT panel (middle): details the sequential workflow of an oncology MDT, emphasizing points where NLP can enhance efficiency and decision making. 
Critical points of NLP integration are highlighted, aiming to enhance information flow and decision support. Solid lines depict the established, internal workflow steps and 
direct data flow exclusively within the MDT process. Dotted lines represent the points where EHR data are accessed and typically processed manually. NLP model selection 
panel (right): categorizes NLP models based on their complexity and task capabilities, offering a tiered approach for tool selection in MDT applications. The horizontal axis, 
‘NLP task complexity’, signifies the increasing complexity of tasks from left to right. The vertical axis, ‘NLP model complexity’, indicates the increasing complexity of the 
models from bottom to top.Three tiers are suggested (small NLP, optimized generative NLP, and foundational generative NLP models) to guide the selection of appropriate 
tools for applications in the MDT. The dotted line in lower panel illustrates the increasing scale of text processing capacity with higher NLP model complexity. A fuller value 
continuum of the three tiers is displayed in Table 1. LLMs leverage various NLP techniques as their foundation, and represent the state-of-the-art in foundational generative 
NLP. While foundational generative NLP might not require the sheer scale or emergent capabilities of modern LLMs, its implementation within MDTs can lead to more 
manageable practical challenges, including data privacy concerns, regulatory hurdles specific to AI in clinical practice, user adoption, and the ongoing need for maintenance 
and updates of AI models.
AI, artificial intelligence; LLM, large language models; NLP, natural language processing.
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proactive approach to evaluation, ethical governance, 
and regulatory oversight to ensure patient safety and 
maintain trust. 8

THE OPERATIONAL PROCESS FOR AI IMPLEMENTATION 
IN MDTS

Utilizing models of different complexity tiers, namely small 
NLP, optimized generative NLP, and powerful foundational 
generative NLP, an NLP-assisted workflow can be designed 
to enhance the MDT process (Table 1). The choice of the 
NLP model and its corresponding validation approach are 
critical and vary based on the task’s complexity and the 
nature of the desired output. 9-13

The NLP model selection can be envisioned as a dynamic 
library of NLP methods, selectable to construct tailored 
workflows (Figure 1, panel NLP model selection). Following 
the principles laid out here and given the variability of MDT 
operational processes, these workflows can in principle be 
extended to any MDT beyond oncology. Raw clinical data 
from electronic health records (EHRs), including patient 
status reports, laboratory test results, and detailed pa-
thology reports are routed to specialized NLP modules 
based on the specific information extraction and synthesis 
tasks required.
The first option for workflow construction, targeted in-

formation extraction, utilizes models belonging to the small 
NLP tier. As demonstrated in Figure 1 (panel NLP model 
selection), these models excel at various information 
extraction tasks, including named entity recognition 
(NER), 14-16 question answering (Q/A), 17-19 relation extrac-
tion, 20-22 and classification. 23,24 For instance, small NLP 
models have demonstrated strong performance across 
diverse tasks and data scales. A convolutional neural 
network-based small NLP model achieved high accuracy 
across five information extraction tasks from a large

dataset of over 23 000 pathology reports. 25 Furthermore, 
sophisticated training techniques have been shown to 
improve the performance of small NLP models when 
assigning ICD-O-3 codes to pathology reports. 26 The po-
tential of such models for underrepresented languages was 
recently by training a Spark NLP model on just 100 
manually annotated Romanian colonoscopy reports and 
still achieving excellent performance for NER. 27 These 
models are typically trained on standard servers (i.e. cost-
effective systems equipped with powerful consumer-
grade components, having a shorter life span) with 
graphical processing units (GPUs) and, once optimized, can 
be deployed for real-time inference on more accessible 
central processing unit (CPU)-based systems or even edge 
devices. Their validation is straightforward, relying on 
traditional performance metrics such as accuracy and F1-
score, which are calculated automatically on a held-out, 
human-annotated dataset. The output is a single, verifi-
able data point. 9,28 Such projects can now be implemented 
without a huge investment into infrastructure or compu-
tational power, as the necessary hardware may already be 
available within the hospital and the expertise can often be 
found within its IT staff with recent university training. 
Another option for workflow construction, structured 

output generation, employs optimized generative NLP 
models to carry out more complex contextual under-
standing and data structuring. These models analyze com-
bined inputs, such as structured laboratory data and 
unstructured patient reports (from various linguistic con-
texts), to identify and format clinically relevant information. 
A prime example is the identification and structuring of 
potential adverse events, like neutropenia or thrombocy-
topenia, into a standardized format, such as JSON, ready 
for integration into the MDT’s review tools. This process 
heavily relies on sophisticated prompt engineering, where 
carefully crafted instructions guide the model to extract

Table 1. Tiered language processing value continuum: from extraction to synthesis

Small NLP Optimized generative NLP Foundational generative NLP

Performance metrics Standard metrics Standard and qualitative metrics Primarily qualitative metrics
Scalability and efficiency High efficiency for specific tasks. 

Low scalability and cost
Moderate efficiency and scalability. 
Moderate cost

Low efficiency, high scalability. 
Very high cost

Accuracy and reliability High accuracy on specific tasks. 
Brittle with new data

Good accuracy within fine-tuned domain. 
More robust than small NLP

High variability. Risk of fluent but 
incorrect information

Usability in health care Ideal for specific, repetitive tasks. 
Needs domain experts

Good for summarization, data structuring, 
decision support

Broad use for complex tasks 
(problem-solving). Requires 
validation

Flexibility and computational 
cost

Low flexibility (one task/model). 
Very low cost

Moderate flexibility (adaptable). 
Moderate cost

Very high flexibility (multitask). 
Extremely high cost

Risk of hallucination Very low. Extractive and non-generative Moderate risk. Can generate plausible 
but incorrect information

High risk. Needs robust validation

Ease of capture of temporality Requires manual engineering. 
Challenging

Better with fine-tuning on relevant data Excellent. Requires careful prompting

Small NLP: represents foundational NLP techniques designed for specific, less complex tasks. Entity recognition, relationship extraction, negation detection, attribute extraction, 
factual lookup, clinical concept mapping: examples of targeted information extraction tasks, typically processing up to ∼500 words. Optimized generative NLP: refers to more 
advanced generative models capable of handling moderately complex tasks. Medical text summarization, information structuring, clinical guideline compliance, clinical decision 
support: tasks involving processing up to 5000 words. Foundational generative NLP: encompasses state-of-the-art models, including LLMs, suited for highly complex tasks. 
Evidence synthesis, repurposing: represent broad information discovery tasks, capable of processing over 100 000 words. Evaluation Metrics:
Standard metrics: F1-score, precision, recall. Qualitative metrics: subjective, human-based assessments of AI output. They often evaluate qualities like coherence, relevance, and 
factual accuracy, which are difficult to capture with a simple numerical score.
AI, artificial intelligence; LLMs, large language models; NLP, natural language processing.
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and format information with fewer data annotations 
required, as annotations are primarily needed for validation 
rather than training. These optimized generative NLP 
models are designed to run locally on capable servers (i.e. 
high-speed, reliable, and scalable systems equipped with 
high-end consumer or enterprise-grade components, 
designed for continuous use), potentially with GPUs (for 
parallel processing resulting in faster response times). 
Crucially, while optimized generative NLP can also handle 
tasks traditionally carried out by small NLP models, such as 
NER, this flexibility comes at a significantly higher compu-
tational cost, representing a key trade-off for broader 
applicability. However, for tasks requiring a broader 
contextual understanding or more flexible output formats, 
they offer significant advantages without the need for 
specific training data for each new task. 29-31 Studies have 
demonstrated practical validation approaches for using 
optimized generative NLP in NER tasks with sophisticated 
prompt engineering, often combining automated metrics 
(achievable with annotated validation data) 32 with auto-
mated checks for the required output structure (e.g. vali-
dating against a JSON schema) 11 and qualitative human 
review for nuances. 33,34 Given the complexity and potential 
clinical impact, the validation of structured outputs from 
these models involves rigorous manual review by clinicians 
to verify the relevance, accuracy, and adherence to clinical 
guidelines (e.g. toxicity grading). 35,36

For complex tasks, the system can be integrated with 
foundational generative NLP models. These powerful 
models are often cloud based due to their high computa-
tional demands. A promising evolution is agentic AI, where 
the NLP/LLM acts as a central ‘brain’. This brain autono-
mously selects and coordinates specialized tools to carry 
out multi-step tasks. These AI agents are designed to 
function with a high degree of autonomy, capable of 
analyzing a clinical case, identifying the necessary steps for 
a full evaluation, and then sequentially using the appro-
priate tools―such as segmenting a medical image or 
extracting structured data from a report―to gather the 
required information. 27,37 As demonstrated by Ferber 
et al., 38 this integration of an LLM with a toolkit of 
specialized functions drastically improves the ability to 
generate precise solutions for complex, realistic medical 
cases, moving beyond simple data structuring to a more 
comprehensive and autonomous analysis. As with many AI 
applications, it might be too early to deploy such autono-
mous systems in clinical practice, given ongoing concerns 
about their reliability, transparency, and accountability. 
Ensuring the safety and validity of these ‘black box’ 
systems, alongside establishing clear regulatory frame-
works, remains a critical challenge before they can be 
responsibly integrated into patient care pathways. 39 

While similar in principle to prompting optimized 
generative NLP, leveraging foundational generative NLP 
models often involves more intricate and extensive prompt 
engineering to harness their vast general knowledge, 
advanced reasoning capabilities, and huge context win-
dows (often exceeding 100 000 words). Furthermore, these

models, accessed via application programming interface, 
offer tools for enhanced validation. For instance, one can 
prompt the model to verify its generated interpretations of 
molecular test results against up-to-date online knowledge 
bases or to cross-reference potential off-label treatment 
options with current research literature. 40-42 They excel at 
synthesizing information across diverse and voluminous 
datasets, such as comprehensive case summaries or 
insights derived from an entire patient history. For such 
high-level, generative outputs, validation methods include 
qualitative human evaluation by multiple independent 
clinical raters, assessing aspects like coherence, relevance, 
factual accuracy, and completeness, as automated metrics 
alone are insufficient to capture clinical utility (Table 1). The 
necessity for different validation approaches underscores 
that the reliability of NLP in clinical settings is directly tied 
to the complexity and criticality of the task it carries
out. 30,43,44

SETTING THE PACE―FROM HETEROGENEITY TO AI-
DRIVEN OPERATIONAL EXCELLENCE IN MDTS: ENHANCING 
PATIENT OUTCOMES

The integration of AI within MDTs presents a trans-
formative opportunity to significantly enhance cancer care. 
By streamlining operational processes, boosting decision-
making efficiency, and establishing crucial feedback loops 
for continuous learning, NLP can profoundly support MDTs 
both operationally and scientifically, ensuring that human 
clinical expertise remains central. This approach promises 
not only improved patient outcomes, but also a more 
efficient utilization of resources across health care systems. 
However, the inherent heterogeneity in MDT organiza-

tion across different countries and hospitals poses a sig-
nificant challenge to the widespread and standardized 
implementation of AI solutions. This organizational vari-
ability, coupled with the prevalent reliance on unstructured 
data sources and static documentation, critically impedes 
the systematic collection of decision rationale and hinders 
the essential feedback loops for continuous learning and 
improvement.
To address these challenges and foster the necessary 

trust for regulatory acceptance of AI in clinical decision 
making, several international initiatives are emerging. In 
Europe, the Digital Institute for Cancer Outcomes Research 
(DIGICORE) and its DigiONE network (DIGItal Infrastructure 
for ONcology) are at the forefront of leveraging AI tech-
nologies to improve precision oncology in Europe. 45 While 
a primary focus of DIGICORE, and indeed a broader 
movement within health care, is on structuring real-world 
data for secondary use (e.g. for research, outcomes anal-
ysis, and benchmarking across health care systems, often 
utilizing frameworks like Minimal Essential Description of 
Cancer and Observational Medical Outcomes Partnership), 
the power of their approach extends further. By addressing 
the complexities of unstructured clinical notes through NLP 
technologies, the very same DIGICORE NLP technologies 
employed to extract and harmonize critical insights for
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research protocols and health quality indicators can be 
readily adapted to structure data for primary use, directly 
enhancing vital clinical processes such as MDTs. 
DIGICORE’s roadmap includes defining and executing, 

together with health care professionals, a survey to map 
current MDT practices and establish a crucial operational 
baseline. The concept of a ‘placebo’ survey is to establish 
an objective, detailed baseline of the current MDT opera-
tional process before the introduction of any new AI-driven 
technology. The term ‘placebo’ is used metaphorically; the 
survey is a diagnostic tool, rather than an active interven-
tion, designed to map existing workflows, identify 
communication barriers, and pinpoint operational bottle-
necks without the bias that might arise from simulta-
neously introducing a new system. This foundational 
understanding of current practices is crucial, as it provides 
a clear benchmark against which the true impact and 
effectiveness of subsequently implemented AI solutions 
can be accurately measured. In parallel, the United States-
based xCures initiative 46 operates the xDECIDE platform, an 
AI-augmented clinical decision support system. This system 
uses a ‘human—AI team’ approach, combining NLP and 
machine learning with expert review from oncologists and 
molecular pharmacologists in a virtual tumor board setting. 
By structuring complex patient data and integrating real-
world evidence, these transatlantic efforts are building 
the foundational, validated frameworks vital for unlocking 
AI’s full potential in MDTs. These international initiatives 
are essential for paving the way for scalable advancements 
in global cancer care and building the confidence required 
for widespread adoption.
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